Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.322
Filtrar
1.
Nat Commun ; 15(1): 1920, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429280

RESUMO

How sensory systems extract salient features from natural environments and organize them across neural pathways is unclear. Combining single-cell and population two-photon calcium imaging in mice, we discover that retinal ON bipolar cells (second-order neurons of the visual system) are divided into two blocks of four types. The two blocks distribute temporal and spatial information encoding, respectively. ON bipolar cell axons co-stratify within each block, but separate laminarly between them (upper block: diverse temporal, uniform spatial tuning; lower block: diverse spatial, uniform temporal tuning). ON bipolar cells extract temporal and spatial features similarly from artificial and naturalistic stimuli. In addition, they differ in sensitivity to coherent motion in naturalistic movies. Motion information is distributed across ON bipolar cells in the upper and the lower blocks, multiplexed with temporal and spatial contrast, independent features of natural scenes. Comparing the responses of different boutons within the same arbor, we find that axons of all ON bipolar cell types function as computational units. Thus, our results provide insights into the visual feature extraction from naturalistic stimuli and reveal how structural and functional organization cooperate to generate parallel ON pathways for temporal and spatial information in the mammalian retina.


Assuntos
Retina , Células Bipolares da Retina , Animais , Camundongos , Retina/fisiologia , Células Bipolares da Retina/fisiologia , Axônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Mamíferos
2.
Curr Biol ; 34(8): 1687-1704.e8, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38554708

RESUMO

Neurons rely on the long-range trafficking of synaptic components to form and maintain the complex neural networks that encode the human experience. With a single neuron capable of forming thousands of distinct en passant synapses along its axon, spatially precise delivery of the necessary synaptic components is paramount. How these synapses are patterned, as well as how the efficient delivery of synaptic components is regulated, remains largely unknown. Here, we reveal a novel role for the microtubule (MT)-severing enzyme spastin in locally enhancing MT polymerization to influence presynaptic cargo pausing and retention along the axon. In human neurons derived from induced pluripotent stem cells (iPSCs), we identify sites stably enriched for presynaptic components along the axon prior to the robust assembly of mature presynapses apposed by postsynaptic contacts. These sites are capable of cycling synaptic vesicles, are enriched with spastin, and are hotspots for new MT growth and synaptic vesicle precursor (SVP) pausing/retention. The disruption of neuronal spastin level or activity, by CRISPRi-mediated depletion, transient overexpression, or pharmacologic inhibition of enzymatic activity, interrupts the localized enrichment of dynamic MT plus ends and diminishes SVP accumulation. Using an innovative human heterologous synapse model, where microfluidically isolated human axons recognize and form presynaptic connections with neuroligin-expressing non-neuronal cells, we reveal that neurons deficient for spastin do not achieve the same level of presynaptic component accumulation as control neurons. We propose a model where spastin acts locally as an amplifier of MT polymerization to pattern specific regions of the axon for synaptogenesis and guide synaptic cargo delivery.


Assuntos
Axônios , Microtúbulos , Espastina , Espastina/metabolismo , Espastina/genética , Microtúbulos/metabolismo , Humanos , Axônios/metabolismo , Axônios/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Vesículas Sinápticas/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia
3.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38471782

RESUMO

Cytoplasmic protein tyrosine phosphatase nonreceptor type 11 (PTPN11) and Drosophila homolog Corkscrew (Csw) regulate the mitogen-activated protein kinase (MAPK) pathway via a conserved autoinhibitory mechanism. Disease-causing loss-of-function (LoF) and gain-of-function (GoF) mutations both disrupt this autoinhibition to potentiate MAPK signaling. At the Drosophila neuromuscular junction glutamatergic synapse, LoF/GoF mutations elevate transmission strength and reduce activity-dependent synaptic depression. In both sexes of LoF/GoF mutations, the synaptic vesicles (SV)-colocalized synapsin phosphoprotein tether is highly elevated at rest, but quickly reduced with stimulation, suggesting a larger SV reserve pool with greatly heightened activity-dependent recruitment. Transmission electron microscopy of mutants reveals an elevated number of SVs clustered at the presynaptic active zones, suggesting that the increased vesicle availability is causative for the elevated neurotransmission. Direct neuron-targeted extracellular signal-regulated kinase (ERK) GoF phenocopies both increased local presynaptic MAPK/ERK signaling and synaptic transmission strength in mutants, confirming the presynaptic regulatory mechanism. Synapsin loss blocks this elevation in both presynaptic PTPN11 and ERK mutants. However, csw null mutants cannot be rescued by wild-type Csw in neurons: neurotransmission is only rescued by expressing Csw in both neurons and glia simultaneously. Nevertheless, targeted LoF/GoF mutations in either neurons or glia alone recapitulate the elevated neurotransmission. Thus, PTPN11/Csw mutations in either cell type are sufficient to upregulate presynaptic function, but a dual requirement in neurons and glia is necessary for neurotransmission. Taken together, we conclude that PTPN11/Csw acts in both neurons and glia, with LoF and GoF similarly upregulating MAPK/ERK signaling to enhance presynaptic Synapsin-mediated SV trafficking.


Assuntos
Proteínas de Drosophila , Sistema de Sinalização das MAP Quinases , Neuroglia , Neurônios , Terminações Pré-Sinápticas , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Sinapsinas , Transmissão Sináptica , Vesículas Sinápticas , Animais , Sinapsinas/metabolismo , Sinapsinas/genética , Vesículas Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neuroglia/metabolismo , Neuroglia/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Masculino , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Feminino , Drosophila , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiologia , Mutação , Animais Geneticamente Modificados
4.
Science ; 383(6687): eadg6757, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452088

RESUMO

The hippocampal mossy fiber synapse, formed between axons of dentate gyrus granule cells and dendrites of CA3 pyramidal neurons, is a key synapse in the trisynaptic circuitry of the hippocampus. Because of its comparatively large size, this synapse is accessible to direct presynaptic recording, allowing a rigorous investigation of the biophysical mechanisms of synaptic transmission and plasticity. Furthermore, because of its placement in the very center of the hippocampal memory circuit, this synapse seems to be critically involved in several higher network functions, such as learning, memory, pattern separation, and pattern completion. Recent work based on new technologies in both nanoanatomy and nanophysiology, including presynaptic patch-clamp recording, paired recording, super-resolution light microscopy, and freeze-fracture and "flash-and-freeze" electron microscopy, has provided new insights into the structure, biophysics, and network function of this intriguing synapse. This brings us one step closer to answering a fundamental question in neuroscience: how basic synaptic properties shape higher network computations.


Assuntos
Fibras Musgosas Hipocampais , Terminações Pré-Sinápticas , Fibras Musgosas Hipocampais/fisiologia , Fibras Musgosas Hipocampais/ultraestrutura , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Transmissão Sináptica , Região CA3 Hipocampal , Células Piramidais , Humanos , Animais
5.
STAR Protoc ; 5(1): 102832, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38198278

RESUMO

GCaMP8f is a sensitive genetically encoded Ca2+ indicator that enables imaging of neuronal activity. Here, we present a protocol to perform Ca2+ imaging of the Drosophila neuromuscular junction using GCaMP8f targeted to pre- or postsynaptic compartments. We describe ratiometric Ca2+ imaging using GCaMP8f fused to mScarlet and synaptotagmin that reveals Ca2+ dynamics at presynaptic terminals. We then detail "quantal" imaging of miniature transmission events using GCaMP8f targeted to postsynaptic compartments by fusion to a PDZ-binding motif. For complete details on the use and execution of this protocol, please refer to Li et al.,1 Han et al.,2 Perry et al.,3 and Han et al.4.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/fisiologia , Junção Neuromuscular/fisiologia , Proteínas de Drosophila/genética , Terminações Pré-Sinápticas/fisiologia , Neurônios
6.
J Physiol ; 602(3): 485-506, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38155373

RESUMO

Presynaptic voltage-gated Ca2+ channel (CaV ) subtype abundance at mammalian synapses regulates synaptic transmission in health and disease. In the mammalian central nervous system (CNS), most presynaptic terminals are CaV 2.1 dominant with a developmental reduction in CaV 2.2 and CaV 2.3 levels, and CaV 2 subtype levels are altered in various diseases. However, the molecular mechanisms controlling presynaptic CaV 2 subtype levels are largely unsolved. Because the CaV 2 α1  subunit cytoplasmic regions contain varying levels of sequence conservation, these regions are proposed to control presynaptic CaV 2 subtype preference and abundance. To investigate the potential role of these regions, we expressed chimeric CaV 2.1 α1  subunits containing swapped motifs with the CaV 2.2 and CaV 2.3 α1  subunit on a CaV 2.1/CaV 2.2 null background at the calyx of Held presynaptic terminals. We found that expression of CaV 2.1 α1  subunit chimeras containing the CaV 2.3 loop II-III region or cytoplasmic C-terminus (CT) resulted in a large reduction of presynaptic Ca2+ currents compared to the CaV 2.1 α1  subunit. However, the Ca2+ current sensitivity to the CaV 2.1 blocker agatoxin-IVA was the same between the chimeras and the CaV 2.1 α1  subunit. Additionally, we found no reduction in presynaptic Ca2+ currents with CaV 2.1/2.2 cytoplasmic CT chimeras. We conclude that the motifs in the CaV 2.1 loop II-III and CT do not individually regulate CaV 2.1 preference, although these motifs control CaV 2.1 levels and the CaV 2.3 CT contains motifs that negatively regulate presynaptic CaV 2.3 levels. We propose that the motifs controlling presynaptic CaV 2.1 preference are distinct from those regulating CaV 2.1 levels and may act synergistically to impact pathways regulating CaV 2.1 preference and abundance. KEY POINTS: Presynaptic CaV 2 subtype abundance regulates neuronal circuit properties, although the mechanisms regulating presynaptic CaV 2 subtype abundance and preference remain enigmatic. The CaV α1  subunit determines subtype and contains multiple motifs implicated in regulating presynaptic subtype abundance and preference. The CaV 2.1 α1  subunit domain II-III loop and cytoplasmic C-terminus are positive regulators of presynaptic CaV 2.1 abundance but do not regulate preference. The CaV 2.3 α1  subunit cytoplasmic C-terminus negatively regulates presynaptic CaV 2 subtype abundance but not preference, whereas the CaV 2.2 α1  subunit cytoplasmic C-terminus is not a key regulator of presynaptic CaV 2 subtype abundance or preference. The CaV 2 α1  subunit motifs determining the presynaptic CaV 2 preference are distinct from abundance.


Assuntos
Canais de Cálcio Tipo N , Transmissão Sináptica , Animais , Canais de Cálcio Tipo N/genética , Transmissão Sináptica/fisiologia , Sinapses/fisiologia , Terminações Pré-Sinápticas/fisiologia , Neurônios/metabolismo , Mamíferos/metabolismo
7.
J Physiol ; 601(24): 5705-5732, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37942946

RESUMO

Motor neurons are the longest neurons in the body, with axon terminals separated from the soma by as much as a meter. These terminals are largely autonomous with regard to their bioenergetic metabolism and must burn energy at a high rate to sustain muscle contraction. Here, through computer simulation and drawing on previously published empirical data, we determined that motor neuron terminals in Drosophila larvae experience highly volatile power demands. It might not be surprising then, that we discovered the mitochondria in the motor neuron terminals of both Drosophila and mice to be heavily decorated with phosphagen kinases - a key element in an energy storage and buffering system well-characterized in fast-twitch muscle fibres. Knockdown of arginine kinase 1 (ArgK1) in Drosophila larval motor neurons led to several bioenergetic deficits, including mitochondrial matrix acidification and a faster decline in the cytosol ATP to ADP ratio during axon burst firing. KEY POINTS: Neurons commonly fire in bursts imposing highly volatile demands on the bioenergetic machinery that generates ATP. Using a computational approach, we built profiles of presynaptic power demand at the level of single action potentials, as well as the transition from rest to sustained activity. Phosphagen systems are known to buffer ATP levels in muscles and we demonstrate that phosphagen kinases, which support such phosphagen systems, also localize to mitochondria in motor nerve terminals of fruit flies and mice. By knocking down phosphagen kinases in fruit fly motor nerve terminals, and using fluorescent reporters of the ATP:ADP ratio, lactate, pH and Ca2+ , we demonstrate a role for phosphagen kinases in stabilizing presynaptic ATP levels. These data indicate that the maintenance of phosphagen systems in motor neurons, and not just muscle, could be a beneficial initiative in sustaining musculoskeletal health and performance.


Assuntos
Mitocôndrias , Terminações Pré-Sinápticas , Animais , Camundongos , Simulação por Computador , Mitocôndrias/metabolismo , Terminações Pré-Sinápticas/fisiologia , Neurônios Motores/fisiologia , Drosophila/metabolismo , Trifosfato de Adenosina/metabolismo
8.
eNeuro ; 10(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37848287

RESUMO

The Drosophila mushroom body (MB) is an important model system for studying the synaptic mechanisms of associative learning. In this system, coincidence of odor-evoked calcium influx and dopaminergic input in the presynaptic terminals of Kenyon cells (KCs), the principal neurons of the MB, triggers long-term depression (LTD), which plays a critical role in olfactory learning. However, it is controversial whether such synaptic plasticity is accompanied by a corresponding decrease in odor-evoked calcium activity in the KC presynaptic terminals. Here, we address this question by inducing LTD by pairing odor presentation with optogenetic activation of dopaminergic neurons (DANs). This allows us to rigorously compare the changes at the presynaptic and postsynaptic sites in the same conditions. By imaging presynaptic acetylcholine release in the condition where LTD is reliably observed in the postsynaptic calcium signals, we show that neurotransmitter release from KCs is depressed selectively in the MB compartments innervated by activated DANs, demonstrating the presynaptic nature of LTD. However, total odor-evoked calcium activity of the KC axon bundles does not show concurrent depression. We further conduct calcium imaging in individual presynaptic boutons and uncover the highly heterogeneous nature of calcium plasticity. Namely, only a subset of boutons, which are strongly activated by associated odors, undergo calcium activity depression, while weakly responding boutons show potentiation. Thus, our results suggest an unexpected nonlinear relationship between presynaptic calcium influx and the results of plasticity, challenging the simple view of cooperative actions of presynaptic calcium and dopaminergic input.


Assuntos
Drosophila , Terminações Pré-Sinápticas , Animais , Drosophila/fisiologia , Terminações Pré-Sinápticas/fisiologia , Corpos Pedunculados/fisiologia , Cálcio , Dopamina , Neurônios Dopaminérgicos , Plasticidade Neuronal
9.
J Chem Neuroanat ; 133: 102343, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37777094

RESUMO

The locus coeruleus (LC) is the major source for norepinephrine (NE) in the brain and projects to areas involved in learning and memory, reward, arousal, attention, and autonomic functions related to stress. There are three types of adrenergic receptors that respond to NE: alpha1-, alpha2-, and beta-adrenergic receptors. Previous behavioral studies have shown the alpha1-adrenergic receptor (α1AR) to be present in the LC, however, with conflicting results. For example, it was shown that α1ARs in the LC are involved in some of the motivational effects of stimulation of the medial forebrain bundle, which was reduced by α1AR antagonist terazosin. Another study showed that during novelty-induced behavioral activation, the α1AR antagonist prazosin reduced c-fos expression in brain regions known to contain motoric α1ARs, except for the LC, where c-fos expression was enhanced. Despite new research delineating more specific connectivity of the neurons in the LC, and some roles of the adrenergic receptors, the α1ARs have not been localized at the subcellular level. Therefore, in order to gain a greater understanding of the aforementioned studies, we used immunohistochemistry at the electron microscopic (EM) level to determine which neuronal or glial elements in the LC express the α1AR. We hypothesized, based on previous work in the ventral periaqueductal gray area, that the α1AR would be found mainly presynaptically in axon terminals, and possibly in glial elements. Single labeling immunohistochemistry at the EM revealed that about 40% of labeled elements that contained the α1AR were glial elements, while approximately 50% of the labeled neuronal elements were axon terminals or small unmyelinated axons in the LC. Double labeling immunohistochemistry found the α1AR expressed in GFAP-labeled astrocytes, in both GABAergic and glutamatergic axon terminals, and in a portion of the α1AR dendrites, colocalized with tyrosine hydroxylase (TH, a marker for noradrenergic neurons). This study sheds light on the neuroanatomical framework underlying the effects of NE and pharmaceuticals acting directly or indirectly on α1ARs in the LC.


Assuntos
Locus Cerúleo , Terminações Pré-Sinápticas , Ratos , Camundongos , Animais , Locus Cerúleo/metabolismo , Ratos Sprague-Dawley , Terminações Pré-Sinápticas/fisiologia , Axônios/metabolismo , Norepinefrina/metabolismo , Receptores Adrenérgicos/metabolismo
10.
Elife ; 122023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565643

RESUMO

Axons are equipped with the digital signaling capacity by which they generate and faithfully propagate action potentials (APs), and also with the analogue signaling capacity by which subthreshold activity in dendrites and soma is transmitted down the axon. Despite intense work, the extent and physiological role for subthreshold synaptic activity reaching the presynaptic boutons has remained elusive because of the technical limitation to record from them. To address this issue, we made simultaneous patch-clamp recordings from the presynaptic varicosities of cerebellar GABAergic interneurons together with their parent soma or postsynaptic target cells in young rat slices and/or primary cultures. Our tour-de-force direct functional dissection indicates that the somatodendritic spontaneous excitatory synaptic potentials are transmitted down the axon for significant distances, depolarizing presynaptic boutons. These analogously transmitted excitatory synaptic potentials augment presynaptic Ca++ influx upon arrival of an immediately following AP through a mechanism that involves a voltage-dependent priming of the Ca++ channels, leading to an increase in GABA release, without any modification in the presynaptic AP waveform or residual Ca++. Our work highlights the role of the axon in synaptic integration.


Assuntos
Axônios , Terminações Pré-Sinápticas , Ratos , Animais , Axônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Cerebelo/fisiologia , Potenciais de Ação/fisiologia , Interneurônios/fisiologia , Ácido gama-Aminobutírico , Transmissão Sináptica/fisiologia
11.
Nat Commun ; 14(1): 3352, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291089

RESUMO

Wired neurons form new presynaptic boutons in response to increased synaptic activity, however the mechanism(s) by which this occurs remains uncertain. Drosophila motor neurons (MNs) have clearly discernible boutons that display robust structural plasticity, being therefore an ideal system in which to study activity-dependent bouton genesis. Here, we show that in response to depolarization and in resting conditions, MNs form new boutons by membrane blebbing, a pressure-driven mechanism that occurs in 3-D cell migration, but to our knowledge not previously described to occur in neurons. Accordingly, F-actin is decreased in boutons during outgrowth, and non-muscle myosin-II is dynamically recruited to newly formed boutons. Furthermore, muscle contraction plays a mechanical role, which we hypothesize promotes bouton addition by increasing MN confinement. Overall, we identified a mechanism by which established circuits form new boutons allowing their structural expansion and plasticity, using trans-synaptic physical forces as the main driving force.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Neurônios Motores/metabolismo , Terminações Pré-Sinápticas/fisiologia , Proteínas de Drosophila/metabolismo , Contração Muscular , Sinapses
13.
Elife ; 122023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014052

RESUMO

Control of neurotransmission efficacy is central to theories of how the brain computes and stores information. Presynaptic G-protein coupled receptors (GPCRs) are critical in this problem as they locally influence synaptic strength and can operate on a wide range of time scales. Among the mechanisms by which GPCRs impact neurotransmission is by inhibiting voltage-gated calcium (Ca2+) influx in the active zone. Here, using quantitative analysis of both single bouton Ca2+ influx and exocytosis, we uncovered an unexpected non-linear relationship between the magnitude of action potential driven Ca2+ influx and the concentration of external Ca2+ ([Ca2+]e). We find that this unexpected relationship is leveraged by GPCR signaling when operating at the nominal physiological set point for [Ca2+]e, 1.2 mM, to achieve complete silencing of nerve terminals. These data imply that the information throughput in neural circuits can be readily modulated in an all-or-none fashion at the single synapse level when operating at the physiological set point.


Assuntos
Terminações Pré-Sinápticas , Sinapses , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Ácido gama-Aminobutírico , Cálcio
14.
Neuropharmacology ; 234: 109544, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37055008

RESUMO

Strong expression of the G protein-coupled receptor (GPCR) neurotensin receptor 1 (NTR1) in ventral tegmental area (VTA) dopamine (DA) neurons and terminals makes it an attractive target to modulate DA neuron activity and normalize DA-related pathologies. Recent studies have identified a novel class of NTR1 ligand that shows promising effects in preclinical models of addiction. A lead molecule, SBI-0654553 (SBI-553), can act as a positive allosteric modulator of NTR1 ß-arrestin recruitment while simultaneously antagonizing NTR1 Gq protein signaling. Using cell-attached recordings from mouse VTA DA neurons we discovered that, unlike neurotensin (NT), SBI-553 did not independently increase spontaneous firing. Instead, SBI-553 blocked the NT-mediated increase in firing. SBI-553 also antagonized the effects of NT on dopamine D2 auto-receptor signaling, potentially through its inhibitory effects on G-protein signaling. We also measured DA release directly, using fast-scan cyclic voltammetry in the nucleus accumbens and observed antagonist effects of SBI-553 on an NT-induced increase in DA release. Further, in vivo administration of SBI-553 did not notably change basal or cocaine-evoked DA release measured in NAc using fiber photometry. Overall, these results indicate that SBI-553 blunts NT's effects on spontaneous DA neuron firing, D2 auto-receptor function, and DA release, without independently affecting these measures. In the presence of NT, SBI-553 has an inhibitory effect on mesolimbic DA activity, which could contribute to its efficacy in animal models of psychostimulant use.


Assuntos
Antagonistas dos Receptores de Dopamina D2 , Dopamina , Neurônios Dopaminérgicos , Neurotensina , Núcleo Accumbens , Receptores de Neurotensina , Área Tegmentar Ventral , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Núcleo Accumbens/metabolismo , Dopamina/metabolismo , Masculino , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Potenciais de Ação/efeitos dos fármacos , Receptores de Neurotensina/antagonistas & inibidores , Receptores de Neurotensina/metabolismo , Neurotensina/metabolismo , Neurotensina/farmacologia , Ligantes , Antagonistas dos Receptores de Dopamina D2/metabolismo , Antagonistas dos Receptores de Dopamina D2/farmacologia
15.
Curr Opin Neurobiol ; 80: 102706, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36931116

RESUMO

Do dendritic spines, which comprise the postsynaptic component of most excitatory synapses, exist only for their structural dynamics, receptor trafficking, and chemical and electrical compartmentation? The answer is no. Simultaneous investigation of both spine and presynaptic terminals has recently revealed a novel feature of spine synapses. Spine enlargement pushes the presynaptic terminals with muscle-like force and augments the evoked glutamate release for up to 20 min. We now summarize the evidence that such mechanical transmission shares critical features in common with short-term potentiation (STP) and may represent the cellular basis of short-term and working memory. Thus, spine synapses produce the force of learning to leave structural traces for both short and long-term memories.


Assuntos
Memória de Curto Prazo , Sinapses , Sinapses/fisiologia , Terminações Pré-Sinápticas/fisiologia , Espinhas Dendríticas/fisiologia , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia
16.
Commun Biol ; 6(1): 290, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934174

RESUMO

Adult-born granule neurons pass through immature critical periods where they display enhanced somatic excitability and afferent plasticity, which is believed to endow them with unique roles in hippocampal learning and memory. Using patch clamp recordings in mouse hippocampal slices, here we show that young neuron hyper-excitability is also observed at presynaptic mossy fiber terminals onto CA3 pyramidal neurons. However, action potential waveforms mature faster in the bouton than in the soma, suggesting rapid efferent functionality during immature stages.


Assuntos
Hipocampo , Fibras Musgosas Hipocampais , Camundongos , Animais , Potenciais de Ação/fisiologia , Terminações Pré-Sinápticas/fisiologia , Células Piramidais/fisiologia
17.
Science ; 379(6631): 468-473, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36730414

RESUMO

Attention improves perception by enhancing the neural encoding of sensory information. A long-standing hypothesis is that cortical feedback projections carry top-down signals to influence sensory coding. However, this hypothesis has never been tested to establish causal links. We used viral tools to label feedback connections from cortical area V4 targeting early visual cortex (area V1). While monkeys performed a visual-spatial attention task, inactivating feedback axonal terminals in V1 without altering local intracortical and feedforward inputs reduced the response gain of single cells and impaired the accuracy of neural populations for encoding external stimuli. These effects are primarily manifested in the superficial layers of V1 and propagate to downstream area V4. Attention enhances sensory coding across visual cortex by specifically altering the strength of corticocortical feedback in a layer-dependent manner.


Assuntos
Atenção , Retroalimentação Fisiológica , Córtex Visual , Percepção Visual , Animais , Haplorrinos , Estimulação Luminosa , Terminações Pré-Sinápticas/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia
18.
eNeuro ; 10(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697256

RESUMO

Morphologically similar axon boutons form synaptic contacts with diverse types of postsynaptic cells. However, it is less known to what extent the local axonal excitability, presynaptic action potentials (APs), and AP-evoked calcium influx contribute to the functional diversity of synapses and neuronal activity. This is particularly interesting in synapses that contact cell types that show only subtle cellular differences but fulfill completely different physiological functions. Here, we tested these questions in two synapses that are formed by rat hippocampal granule cells (GCs) onto hilar mossy cells (MCs) and CA3 pyramidal cells, which albeit share several morphologic and synaptic properties but contribute to distinct physiological functions. We were interested in the deterministic steps of the action potential-calcium ion influx coupling as these complex modules may underlie the functional segregation between and within the two cell types. Our systematic comparison using direct axonal recordings showed that AP shapes, Ca2+ currents and their plasticity are indistinguishable in synapses onto these two cell types. These suggest that the complete module that couples granule cell activity to synaptic release is shared by hilar mossy cells and CA3 pyramidal cells. Thus, our findings present an outstanding example for the modular composition of distinct cell types, by which cells employ different components only for those functions that are deterministic for their specialized functions, while many of their main properties are shared.


Assuntos
Cálcio , Fibras Musgosas Hipocampais , Ratos , Animais , Potenciais de Ação/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Cálcio/metabolismo , Transmissão Sináptica/fisiologia , Células Piramidais/fisiologia , Terminações Pré-Sinápticas/fisiologia , Sinapses/metabolismo
19.
J Assoc Res Otolaryngol ; 24(2): 181-196, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36627519

RESUMO

Cholinergic signaling shapes sound processing and plasticity in the inferior colliculus (IC), the midbrain hub of the central auditory system, but how cholinergic terminals contact and influence individual neuron types in the IC remains largely unknown. Using pharmacology and electrophysiology, we recently found that acetylcholine strongly excites VIP neurons, a class of glutamatergic principal neurons in the IC, by activating α3ß4* nicotinic acetylcholine receptors (nAChRs). Here, we confirm and extend these results using tissue from mice of both sexes. First, we show that mRNA encoding α3 and ß4 nAChR subunits is expressed in many neurons throughout the IC, including most VIP neurons, suggesting that these subunits, which are rare in the brain, are important mediators of cholinergic signaling in the IC. Next, by combining fluorescent labeling of VIP neurons and immunofluorescence against the vesicular acetylcholine transporter (VAChT), we show that individual VIP neurons in the central nucleus of the IC (ICc) are contacted by a large number of cholinergic boutons. Cholinergic boutons were distributed adjacent to the somata and along the full length of the dendritic arbors of VIP neurons, positioning cholinergic signaling to affect synaptic computations arising throughout the somatodendritic compartments of VIP neurons. In addition, cholinergic boutons were occasionally observed in close apposition to dendritic spines on VIP neurons, raising the possibility that cholinergic signaling also modulates presynaptic release onto VIP neurons. Together, these results strengthen the evidence that cholinergic signaling exerts widespread influence on auditory computations performed by VIP neurons and other neurons in the IC.


Assuntos
Colículos Inferiores , Feminino , Masculino , Camundongos , Animais , Neurônios/fisiologia , Colinérgicos , Terminações Pré-Sinápticas/fisiologia , Dendritos
20.
J Mol Biol ; 435(1): 167818, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36089056

RESUMO

Vesicle fusion is of crucial importance to neuronal communication at neuron terminals. The exquisite but complex fusion machinery for neurotransmitter release is tightly controlled and regulated by protein/neurotransmitter-membrane interactions. Computational 'microscopies', in particular molecular dynamics simulations and related techniques, have provided notable insight into the physiological process over the past decades, and have made enormous contributions to fields such as neurology, pharmacology and pathophysiology. Here we review the computational advances of protein/neurotransmitter-membrane interactions related to presynaptic vesicle-membrane fusion and neurotransmitter release, and outline the in silico challenges ahead for understanding this important physiological process.


Assuntos
Fusão de Membrana , Neurotransmissores , Terminações Pré-Sinápticas , Transmissão Sináptica , Vesículas Sinápticas , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica/fisiologia , Biologia Computacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...